Septic Shock: Pharmacologic Agents for Hemodynamic Support

Nathan E Cope, PharmD
PGY2 Critical Care Pharmacy Resident
Objectives

• Define septic shock and briefly review pathophysiology
• Outline receptor selectivity and physiologic functions
• Examine guidelines and recommendations
• Compare vasopressors used in septic shock
• Distinguish which patients benefit from corticosteroids
• Summarize the when and why of vasopressors, inotropes, and steroids
Agents of Interest

- Norepinephrine
- Dopamine
- Epinephrine
- Vasopressin
- Phenylephrine
- Dobutamine
- Hydrocortisone
Septic Shock

Definition
• Hypotension refractory to adequate fluid resuscitation

Pathophysiology
• ↓ intravascular volume (capillary leakage)
• ↓ arteriole resistance
• ↑ venous capacitance
• ↓ cardiac contractility
Receptor Types & Physiological Function

<table>
<thead>
<tr>
<th>Vasoconstriction</th>
<th>Heart Rate</th>
<th>Splanchnic Blood Flow</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>↑</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>β</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>V</td>
<td>↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td>↑</td>
</tr>
</tbody>
</table>

Basic and Clinical Pharmacology 11th ed
Spectrum of Activity

α

Phenylephrine
Norepinephrine
Epinephrine

β

Dobutamine
Relative Receptor Activity

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>β</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epinephrine</td>
<td>+++</td>
<td>+++</td>
<td>0</td>
</tr>
<tr>
<td>Norepinephrine</td>
<td>+++</td>
<td>++</td>
<td>0</td>
</tr>
<tr>
<td>Phenylephrine</td>
<td>+++</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dobutamine</td>
<td>+/-</td>
<td>+++</td>
<td>0</td>
</tr>
<tr>
<td>Dopamine</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

α ≈ β
α >> β
α >>>>> β
β >>>>> α

Adopted from:
Tintinalli’s Emergency Medicine
Basic and Clinical Pharmacology 11th ed.

R. Phillip Dellinger, MD; Mitchell M. Levy, MD; Andrew Rhodes, MB BS; Djillali Annane, MD; Herwig Gerlach, MD, PhD; Steven M. Opal, MD; Jonathan E. Sevinsky, MD; Charles L. Sprung, MD; Ivor S. Douglas, MD; Roman Jaeschke, MD; Tiffany M. Osborn, MD, MPH; Mark E. Nunnally, MD; Sean R. Townsend, MD; Konrad Reinhart, MD; Ruth M. Kleinpell, PhD, RN-CS; Derek C. Angus, MD, MPH; Clifford S. Deutschman, MD, MS; Flavia R. Machado, MD, PhD; Gordon D. Rubenfeld, MD; Steven A. Webb, MB BS, PhD; Richard J. Beale, MB BS; Jean-Louis Vincent, MD, PhD; Rui Moreno, MD, PhD; and the Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup*
Grading of Recommendations

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Strong</td>
</tr>
<tr>
<td>2</td>
<td>Weak</td>
</tr>
<tr>
<td>A</td>
<td>High</td>
</tr>
<tr>
<td>B</td>
<td>Moderate</td>
</tr>
<tr>
<td>C</td>
<td>Low</td>
</tr>
<tr>
<td>D</td>
<td>Very Low</td>
</tr>
</tbody>
</table>

Surviving Sepsis, CCM 2013
Surviving Septic Shock: Vasopressors

1. Target a MAP of 65 mmHg (1C)
Vascular Beds

![Graph showing the relationship between blood flow and perfusion pressure, with a line labeled 'autoregulation'.]
Evaluating Tissue Perfusion

- Mean Arterial Pressure (MAP)
- Blood Pressure
- Lactate
- SvO₂
- Urinary Output
- Skin perfusion
- Mental status
Surviving Septic Shock: Vasopressors

2. Norepinephrine as first choice (1B)
Norepinephrine

<table>
<thead>
<tr>
<th>Preparation</th>
<th>Initial Rate</th>
<th>Adjustment</th>
<th>Soft Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>4mg / 250ml D5W</td>
<td>5</td>
<td>2-5 every 5 min</td>
<td>30</td>
<td>mcg / min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>+++</td>
<td>++</td>
<td>0</td>
</tr>
</tbody>
</table>

- α and β activity, but **prominently α**
- Vasoconstriction with opposing β
- Little change in heart rate

Basic and Clinical Pharmacology 11th ed
Dopamine

<table>
<thead>
<tr>
<th>Preparation</th>
<th>Initial Rate</th>
<th>Adjustment</th>
<th>Max Rate</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREMIX (800mg / 500ml D5W)</td>
<td>8-10</td>
<td>5 every 3-5 min</td>
<td>20</td>
<td>mcg / kg / min</td>
</tr>
</tbody>
</table>

Dose-Dependent Pharmacological Profile

- **Low**: <5 mcg / kg / min → D
- **Intermediate**: 5-10 mcg / kg / min → $\beta + D$
- **High**: >10 mcg / kg / min → $\alpha + \beta + D$

Basic and Clinical Pharmacology 11th ed
Norepinephrine vs. Dopamine

- **De Backer, et al. 2010**
 - Not specific to “septic shock”
 - No difference in rate of death
 - Greater adverse events with dopamine

- **Vasu, et al. 2012**
 - Systemic Review, 6 RCT’s
 - Pooled analysis favored norepinephrine
 - More adverse effects with dopamine
 - Short term mortality favoring norepinephrine

- **De Backer, et al. 2012**
 - Meta-analysis
 - Dopamine increased mortality

*De Backer, et al. NEJM 2010
De Backer, et al. CCM 2012
3. Epinephrine can be substituted for or added to norepinephrine for adequate blood pressure (2B)
Epinephrine

- Hyperlactatemia
- May decrease splanchnic circulation
- No evidence of difference from norepinephrine

<table>
<thead>
<tr>
<th>Preparation</th>
<th>Initial Rate</th>
<th>Adjustment</th>
<th>Soft Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>4mg / 250ml NS</td>
<td>5</td>
<td>1-2 every 3-5 min</td>
<td>20</td>
<td>mcg / min</td>
</tr>
</tbody>
</table>

α +++ β +++ D 0
Surviving Septic Shock: Vasopressors

4. Vasopressin can be added to norepinephrine to raise MAP or decrease norepinephrine (Ungraded)

5. Not recommended as initial single agent, and higher doses only for salvage therapy (Ungraded)
Vasopressin

- Relative vasopressin deficiency
- Norepinephrine dose sparing effect
- VASST trial
 - no difference in outcome
 - $<15 \text{ mcg/min of NE}$, better survival
 - More digital ischemia with vasopressin

<table>
<thead>
<tr>
<th>Preparation</th>
<th>Initial Rate</th>
<th>Adjustment</th>
<th>Max Rate</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 units / 250ml NS</td>
<td>0.03</td>
<td>rare</td>
<td>0.04</td>
<td>units / min</td>
</tr>
</tbody>
</table>

Basic and Clinical Pharmacology 11th ed
Surviving Septic Shock: Vasopressors

6. Dopamine as an alternative in select patients (2C)
Dopamine

<table>
<thead>
<tr>
<th>Preparation</th>
<th>Initial Rate</th>
<th>Adjustment</th>
<th>Max Rate</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREMIX (800mg / 500ml D5W)</td>
<td>8-10</td>
<td>5 every 3-5 min</td>
<td>20</td>
<td>mcg / kg / min</td>
</tr>
</tbody>
</table>

• Selected Patients
 • Low risk of tachyarrhythmia’s
 • Absolute or relative bradycardia

• Balance with risk of adverse arrhythmias
Surviving Septic Shock: Vasopressors

7. Phenylephrine not recommended with few exceptions (1C)
Phenylephrine

Exceptions for use
1. Norepinephrine → serious arrhythmias
2. Cardiac output is known to be high
3. Added for salvage therapy

Caution
- Can decrease stroke volume, cause bradycardia

<table>
<thead>
<tr>
<th>Preparation</th>
<th>Initial Rate</th>
<th>Adjustment</th>
<th>Soft Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>50mg / 250ml NS</td>
<td>100</td>
<td>10-50 every 5 min</td>
<td>300</td>
<td>mcg / min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>+++</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Surviving Sepsis, CCM 2013
Basic and Clinical Pharmacology 11th ed
Surviving Septic Shock: Vasopressors

8. Do not use low-dose dopamine for renal protection (1A)
Low Dose Dopamine

- <5 mcg/kg/min
- May increase renal blood flow and UOP
- No difference in outcomes, may induce harm
- Bellomo, et al. 2000 (RCT)
 - No difference in peak serum creatinine
 - Does not confer renal protection
- Kellum, et al. 2001 (meta-analysis)
 - 58 studies
 - Did not prevent mortality, onset of AKI, or dialysis

Bellomo, et al. 2000
Kellum, et al. 2001
Surviving Septic Shock: Inotropic Therapy

1. Dobutamine in addition to vasopressor for myocardial dysfunction or ongoing hypoperfusion *despite* volume and MAP (1C)

2. Do not push supranormal, predetermined cardiac index (1B)
Dobutamine

• Mixed α stimulation/blockade
• Systemic vasodilation
• Myocardial contractility
• Minimal heart rate changes

<table>
<thead>
<tr>
<th>Preparation</th>
<th>Initial Rate</th>
<th>Adjustment</th>
<th>Max Rate</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREMIX (500mg / 250ml NS)</td>
<td>2</td>
<td>2.5-5 q5-10 min</td>
<td>20</td>
<td>mcg / kg / min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>+/-</td>
<td>++++</td>
<td>0</td>
</tr>
</tbody>
</table>
Surviving Septic Shock: Corticosteroids

1. Only add hydrocortisone if refractory to fluids and vasopressors (2C)

2. Suggest against use of ACTH stimulation test (2B)
Surviving Septic Shock: Corticosteroids

3. Taper off when vasopressors no longer required (2D)

4. Not for treatment of sepsis without shock (1D)

5. Continuous infusion over bolus (2D)
Steroid Activity

- Glucocorticoid
- Mineralocorticoid

<table>
<thead>
<tr>
<th>Steroid</th>
<th>Equivalent Dose</th>
<th>Anti-inflammatory</th>
<th>Mineralocorticoid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocortisone</td>
<td>20 mg</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Prednisone</td>
<td>5 mg</td>
<td>4</td>
<td>0.6</td>
</tr>
<tr>
<td>Methylprednisolone</td>
<td>4 mg</td>
<td>5</td>
<td>0.25</td>
</tr>
<tr>
<td>Dexamethosone</td>
<td>0.8 mg</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Fludrocortisone</td>
<td>-</td>
<td>0</td>
<td>125</td>
</tr>
</tbody>
</table>

Basic and Clinical Pharmacology 11th ed
Corticosteroids

 • French multicenter RCT (specific to refractory septic shock)
 • Significant shock reversal and reduction in mortality
 • No significant difference in responders vs non-responders

• CORTICUS trial, 2008.
 • Enrolled patients without sustained shock, lower risk of death
 • Decrease time to shock resolution, but no mortality benefit
 • Patient that persisted <90 SBP at 1 day, despite fluids and vasopressors
 • 11.2% absolute reduction in mortality in steroid group

Annane, et al. JAMA 2002
Sprung, et al. NEJM 2008
Continuous versus Bolus

• Hydrocortisone 200 mg/day
 • 200 mg / 24h continuous infusion or...
 • 50 mg every 6h

• Concerns for “peak effect” with bolus
 • Hyperglycemia, hypernatremia

• Reality
 • Glucose peak levels ~150 mg/dl in study
 • No significant individual variability found
 • No association with patient outcomes
 • Continuous infusion not current clinical practice

Weber-Carstens Study

Summary

• Vasopressors when refractory to adequate fluids
• Receptor activity plays a major role in agent selection, with norepinephrine being the first line for a vast majority of patients
• Vasopressin added upon escalation of norepinephrine may spare dosing, offer less side effects, and add possible survival benefit
• Dopamine, Dobutamine, and Phenylephrine are appropriate for only select patients or salvage therapy
• Corticosteroids when refractory to fluids and vasopressors