Statistics: A Brief Overview

Katherine H. Shaver, M.S. Biostatistician Carilion Clinic

Statistics: A Brief Overview Course Objectives

- Upon completion of the course, you will be able to:
 - Distinguish among several statistical applications
 - Select a statistical application suitable for a research question/hypothesis/estimation
 - Identify basic database structure / organization requirements necessary for statistical testing and interpretation

What Can Statistics Do For You?

• Make your research results credible

• Help you get your work published

Make you an informed consumer of others' research

Categories of Statistics

Descriptive Statistics

Inferential Statistics

Descriptive Statistics

Used to Summarize a Set of Data

- N (size of sample)
 Mean, Median, Mode (central tendency)
 Standard deviation, 25th and 75th percentiles (variability)
 Minimum, Maximum (range of data)
- Frequencies (counts, percentages)

Example of a Summary Table of Descriptive Statistics

Summary Statistics for LDL Cholesterol

Lab Parameter	N	Mean	Std. Dev.	Min	Q1	Median	Q3	Max
LDL Cholesterol (mg/dl)	150	140.8	19.5	98	132	143	162	195

Scatterplot

Box-and-Whisker Plot

Histogram

Length of Hospital Stay – A Skewed Distribution

Analysis of Length of Hospital Stay (Days)

Inferential Statistics

 Data from a random sample used to draw conclusions about a larger, unmeasured population

Two Types

 Estimation
 Hypothesis Testing

Types of Inferential Analyses

- Estimation calculate an approximation of a result and the precision of the approximation [associated with confidence interval]
- Hypothesis Testing determine if two or more groups are statistically significantly different from one another [associated with p-value]

Types of Data

The type of data you have will influence your choice of statistical methods...

Types of Data

Categorical:

Data that are labels rather than numbers

-Nominal – order of the categories is arbitrary (e.g., gender)

 Ordinal – natural ordering of the data.
 (e.g., severity of pain rated as: None, Mild, Moderate, Severe, Very Severe)

Types of Data (cont'd)

Continuous:

- Data with a potentially infinite number of possible values (e.g., weight, blood pressure)
- Quanititative; positions along continuous number lines

-Interval vs. ratio - what's the difference?

Dependent vs. Independent Variable

- Dependent Variable: variable you believe may be influenced / modified by treatment or exposure.
- May represent variable you are trying to predict.
- Sometimes referred to as response or outcome variable.

Dependent vs. Independent Variable

 Independent Variable: variable you believe may influence outcome measure.

• Often referred to as predictor or explanatory variable.

Selection of Appropriate Statistical Method for Hypothesis Testing

		Predictor (Independent) Variable		
		Categorical	Continuous	
Outcome (Dependent) Variable	Categorical	Chi-square, Fisher's Exact Test	Logistic Regression	
	Continuous	t-test, ANOVA	Correlation, Linear Regression	

Power Analysis

- Statistical power the ability to detect an effect that actually exists
 - If your results are significant, then you had enough power.
- Is a blend of science and art

Power Analysis

- What do you need to know before a power analysis can be conducted?
 - How will you analyze the data?
 - Estimates appropriate to the statistical technique; two main sources:
 - Published literature
 - Educated guesses (really, it's OK!)

Power Analysis

- T-test example
 - Estimates of group means, variability
- Sometimes we need to approach it from another direction
 - Constraints of total number of patients available, time, funding
 - Multiple scenarios showing what various sample sizes will "buy" you in terms of statistical power

Sample Questions, Example Datasets

- The following slides contain examples of research questions that are answered using hypothesis testing.
- Each question is matched with an appropriate statistical method. (Today's presentation will only cover t-tests and the rest will be covered in Part II of this course.)
- For each question/method combination, there is also a snapshot of what the dataset would look like.

Two-Sample Student's *t*-test for Independent Samples

• A 2-Sample Student's *t*-test for independent samples is used to compare the means of two *different* groups.

• Example:

Is there a difference in the time to therapeutic threshold of a drug in lower weight patients compared to higher weight patients?

Data Layout for 2-Sample *t*-Test for Independent Samples

Group	Time_in_Hours
< 100 kg	5.5
< 100 kg	12
< 100 kg	6
< 100 kg	22
< 100 kg	38
>= 100 kg	18
>= 100 kg	42
>= 100 kg	36
>= 100 kg	20
>= 100 kg	14

2-Sample *t*-Test for Independent Samples

- Group 1: < 100 kg
- Group 2: >= 100 kg

$$t = \frac{\left(\overline{x}_1 - \overline{x}_2\right)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

 The test statistic is calculated. If the probability of getting the resulting value by chance is <0.05 then the means of the two groups are considered to be statistically significantly different from one another.

Paired *t*-test

 For comparing pre and post data from the same subject

Patient_ID	Pre_Score	Post_Score
1	5	7
2	4	5
3	3	3
4	7	6
5	7	8
6	2	5

Paired *t*-test

Calculate the mean and standard deviation of the difference

Test statistic

 The test statistic is calculated and if the probability of getting the resulting value by chance is <0.05 then there is a statistically significant change from pre to post.

- Used to examine linear relationships between two continuous variables.
- Isn't usually the primary statistical technique of a study
- Example:

What is the relationship between dietary cholesterol intake and LDL?

- The correlation coefficient, "r", ranges from -1.00 to 1.00.
 - The <u>number</u> indicates the strength of the relationship
 - Values closer to -1 or 1 indicate a stronger relationship
 - The <u>sign</u> indicates the nature of the relationship
 - A positive *r* indicates a direct relationship
 - A negative *r* indicates an inverse relationship

• Two types of relationships can be identified with correlation:

 $-\hat{\Omega}$ $\hat{\Omega}$ or $\overline{\mathcal{V}}$ $\overline{\mathcal{V}}$ As the value of one variable increases, the value of the other variable increases. Likewise, as the value of a variable decreases, the value of the other variable decreases.

ALWAYS REMEMBER:

Correlation does not equal causation!

Data Layout for Correlation

Study_ID	Avg_daily_chol	LDL
1	305	135
2	212	127
3	397	148
4	200	105
5	195	119
6	461	164
7	479	162
8	354	155
9	288	130

- These data are statistically significantly correlated with an *r* of 0.94.
- This indicates a very strong positive relationship: as average daily cholesterol intake increases, LDL increases.

Categorical Data

- So far we have considered situations where our dependent variable was continuous.
- What if our variable of interest is categorical?
- Chi-square and logistic regression two very commonly used techniques at Carilion

Chi-square / Fisher's Exact Test

- Use when both the predictor (independent) and the outcome (dependent) variable are categorical
- Often used to compare proportions of two groups.

Chi-square / Fisher's Exact Test

- The easy hand-calculation of the chisquare statistic contributed to its popularity in the era before computers.
- However, chi-square does not work well with small sample sizes or sparse data.
- Fisher's exact test is a good alternative for 2x2 tables regardless of the sample size.

Chi-square / Fisher's Exact Test

• Example:

Do patients with staph aureus who receive an infectious disease consult have a lower 60-day mortality compared to staph aureus patients who do not?

Data Layout

Study_ID	ID_consult	Alive
1	Yes	Yes
2	Yes	No
3	Yes	Yes
4	Yes	Yes
5	Yes	Yes
6	Yes	Yes
7	No	No
8	No	No
9	No	No
10	No	No
11	No	No
12	No	Yes

2x2 Table Analysis

The FREQ Procedure

Та	ble of ID_consult by <i>i</i>	Alive		
		Alive		
		No	Yes	Total
ID_consult				
No	Frequency	5	1	6
	Row Pct	83.33	16.67	
	Col Pct	83.33	16.67	
Yes	Frequency	1	5	6
	Row Pct	16.67	83.33	
	Col Pct	16.67	83.33	
Total	Frequency	6	6	12

Statistic	DF	Value	Prob
Chi-Square	1	5.3333	0.0209
Likelihood Ratio Chi-Square	1	5.8221	0.0158
Continuity Adj. Chi-Square	1	3	0.0833
Mantel-Haenszel Chi-Square	1	4.8889	0.027
Phi Coefficient		0.6667	
Contingency Coefficient		0.5547	
Cramer's V		0.6667	

WARNING: 100% of the cells have expected counts less than 5. Chi-Square may not be a valid test.

Fisher's Exact Test				
Cell (1,1) Frequency (F)	5			
Left-sided Pr <= F	0.9989			
Right-sided Pr >= F	0.04			
Table Probability (P)	0.039			
Two-sided Pr <= P	0.0801			

- Logistic regression is used to predict a single outcome (dependent) variable from two or more predictor (independent) variables.
- The outcome must be binary (yes/no).
 Predictors can be any type of data categorical or continuous.

• Example:

What are the predictors of mortality in elderly trauma patients?

Data Layout

Study _ID	Age	Gender	ISS	Alive
1	65	F	16	Yes
2	68	F	20	Yes
3	90	М	13	Yes
4	78	М	12	No
5	82	М	22	No
6	77	F	19	Yes
7	66	М	15	Yes
8	94	F	18	No
9	73	M	11	Yes

• Regression should be considered an exploratory technique. One regression analysis cannot confirm anything.

 Rule of thumb for sample size – minimum of 20 cases per predictor variable

• More is almost always better!

- Logistic regression analysis includes:
 - Creation of develop, test, and validate datasets (best practice if you have enough data)
 - EDA to describe and understand data
 - Stepwise techniques to reduce number of predictors (use with caution!)
 - Interaction variables

- Results tell you:
 - Which predictors, if any, were statistically significant
 - The overall strength / predictive ability of your model
 - Odds ratios

A Caveat!

- We have discussed only a few commonly used statistical methods. If your research question does not quite fit one of the methods discussed here, don't try to force it.
- There are many variations of these methods, and there are numerous other methods not mentioned in this presentation that are appropriate for almost any research situation.
- Contact a biostatistician for assistance.

A Biostatistician Can Help You With:

- Study design
- Choosing outcome variables and how they are measured
- Choosing appropriate statistical methodology
- Power and sample size calculation
- Helping to choose data sources
- Helping to design data collection forms
- Data cleaning, derivations, and analysis
- Interpretation of results
- Helping to write method and results sections of a document

Feel free to contact us!

 Mattie Tenzer, Director, Health Analytics Research Team (HART)

• Min Wang, Manager, HART

• Katherine H. Shaver, Biostatistician, HART