Statistics: A Brief Overview Part I

Katherine Shaver, M.S. Biostatistician Carilion Clinic

Statistics: A Brief Overview Course Objectives

- Upon completion of the course, you will be able to:
 - Distinguish among several statistical applications
 - Select a statistical application suitable for a research question/hypothesis/estimation
 - Identify basic database structure / organization requirements necessary for statistical testing and interpretation

What Can Statistics Do For You?

- Make your research results credible
- Help you get your work published
- Make you an informed consumer of others' research

Categories of Statistics

Descriptive Statistics

Inferential Statistics

Descriptive Statistics

Used to Summarize a Set of Data

- N (size of sample)
 Mean, Median, Mode (central tendency)
 Standard deviation, 25th and 75th percentiles (variability)
 Minimum, Maximum (range of data)
- Frequencies (counts, percentages)

Example of a Summary Table of Descriptive Statistics

Summary Statistics for LDL Cholesterol

Lab Parameter	N	Mean	Std. Dev.	Min	Q1	Median	Q3	Max
LDL Cholesterol (mg/dl)	150	140.8	19.5	98	132	143	162	195

Scatterplot

Box-and-Whisker Plot

Box Plot for Diastolic Blood Pressure Over Time Group=A												
s	Statistics by Day											
N			10	10	10	10	10	10	10	10	10	10
M	lean		101	96.4	94.2	91.4	90.3	91.7	87	85.6	85.3	83.7
SI	td Dev		6.1	7.1	8.0	9.0	8.9	9.0	10.0	9.1	8.8	8.7
M	lin		92	86	80	74	74	78	74	73	74	72
25	5th Per	centile	96	92	90	86	84	87	76	77	76	75
M	ledian		101	95	93	92	90.5	90.5	86	85	85.5	84
75	5th Per	rcentile	106	104	100	96	95	100	96	95	94	92
M	lax		110	108	106	104	103	105	101	96	95	94
	110 -	T										
BP	100 -					Ţ	Ţ		Ţ		_ _	_
Diastolic	90 -		L									
-	80 -											
	70 –			1								
		01JUL	. 0	BJUL 19	5JUL 2	2JUL 2	sjur o	5AUG ·	12AUG	19AUG	26aug	02SEP
	Day											
	Means are connected											

Histogram

Length of Hospital Stay – A Skewed Distribution

Inferential Statistics

 Data from a random sample used to draw conclusions about a larger, unmeasured population

Two Types

 Estimation
 Hypothesis Testing

Types of Inferential Analyses

- Estimation calculate an approximation of a result and the precision of the approximation [associated with confidence interval]
- Hypothesis Testing determine if two or more groups are statistically significantly different from one another [associated with p-value]

Types of Data

The type of data you have will influence your choice of statistical methods...

Types of Data

Categorical:

Data that are labels rather than numbers

Nominal – order of the categories is arbitrary (e.g., gender)
Ordinal – natural ordering of the data.
(e.g., severity of pain rated as:
None, Mild, Moderate, Severe, Very Severe)

Types of Data (cont'd)

Discrete:

- Measurement scale consisting of a number of separate values where intermediate values are not permissible
 - (e.g., the number of trauma patients admitted to the hospital in a given day)

Continuous:

 Data with a potentially infinite number of possible values (e.g., weight, blood pressure)

Dependent vs. Independent Variable

 Dependent Variable: variable you believe may be influenced / modified by treatment or exposure. May represent variable you are trying to predict. Sometimes referred to as response or outcome variable.

Dependent vs. Independent Variable

 Independent Variable: variable you believe may influence outcome measure. Often referred to as predictor or explanatory variable.

Selection of Appropriate Statistical Method for Hypothesis Testing

		Predictor (Independent) Variable		
		Categorical	Continuous	
Outcome	Categorical	Chi-square, Fisher's Exact Test	Logistic Regression	
Variable	Continuous	t-test, ANOVA	Correlation, Linear Regression	

Sample Questions, Example Datasets

- The following slides contain examples of research questions that are answered using hypothesis testing.
- Each question is matched with an appropriate statistical method. (Today's presentation will only cover t-tests and the rest will be covered in Part II of this course.)
- For each question/method combination, there is also a snapshot of what the dataset would look like.

One-sample Student's t-test

 A one-sample Student's *t*-test is useful for comparing the mean value of an experimental group with the mean value of a known norm.

• Example:

The statewide mean ISS score for patients involved in a motorcycle accident and admitted to a hospital is 10. Does the ISS score of CRMH motorcycle patients differ from the statewide average?

Data Layout for a One-sample Student's *t*-test

Patient_ID	CRMH_ISS
1	4
2	9
3	13
4	3
5	20
6	14
7	4
8	17
9	7
10	15

One-sample Student's t-test

Test Statistic

$$t = \frac{\overline{x} - \mu}{\frac{S}{\sqrt{n}}}$$

- The test statistic is calculated. If the probability of getting the resulting test statistic by chance is <0.05 then the CRMH ISS is considered to be statistically significantly different than the VA statewide ISS.
- Note: Failure to achieve statistical significance does not imply that there is no difference. It should be interpreted that there is not enough evidence to detect a statistically significant difference.

Two-Sample Student's *t*-test for Independent Samples

 A 2-Sample Student's *t*-test for independent samples is used to compare the means of two *different* groups.

• Example:

Is there a difference in the time to therapeutic threshold of a drug in lower weight patients compared to higher weight patients?

Data Layout for 2-Sample *t*-Test for Independent Samples

Group	Time_in_Hours
< 100 kg	5.5
< 100 kg	12
< 100 kg	6
< 100 kg	22
< 100 kg	38
>= 100 kg	18
>= 100 kg	42
>= 100 kg	36
>= 100 kg	20
>= 100 kg	14

2-Sample *t*-Test for Independent Samples

- Group 1: < 100 kg
- Group 2: >= 100 kg

$$t = \frac{\left(\overline{x}_1 - \overline{x}_2\right)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

 The test statistic is calculated. If the probability of getting the resulting value by chance is <0.05 then the means of the two groups are considered to be statistically significantly different from one another.

Paired *t*-test

 For comparing pre and post data from the same subject

Patient_ID	Pre_Score	Post_Score
1	5	7
2	4	5
3	3	3
4	7	6
5	7	8
6	2	5

Paired *t*-test

Calculate the mean and standard deviation of the difference

Test statistic

 The test statistic is calculated and if the probability of getting the resulting value by chance is <0.05 then there is a statistically significant change from pre to post.

Part II...

 Part II of this course will cover analysis of variance (ANOVA), correlation, regression, and analysis of categorical data / proportions. We will also discuss power analysis.

A Biostatistician Can Help You With:

- Study design
- Choosing outcome variables and how they are measured
- Choosing appropriate statistical methodology
- Power and sample size calculation
- Helping to choose data sources
- Helping to design data collection forms
- Data cleaning, derivations, and analysis
- Interpretation of results
- Helping to write method and results sections of a document

Feel free to contact us!

- Mattie Tenzer, Director

 mmtenzer@carilionclinic.org
 224-5192 (x55192)
- Katherine Shaver, Biostatistician

 khshaver@carilionclinic.org
 224-5197 (x55197)